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Abstract—Treatment of cis-4,5-diaminocyclohexene derivatives bearing allyl or propargyl groups on the nitrogen atoms, with first
or second generation Grubbs metathesis catalysts, results in initiation of metathesis cascades which include ring-opening of the
unstrained cyclohexene ring. This contrasts with the previous work on the analogous cyclohexene ethers where metathesis reactions
occurred exclusively between the side-chains and no ring-opening of the cyclohexene unit was observed.
� 2007 Elsevier Ltd. All rights reserved.
Over the last decade, first1 and second2 generation
Grubbs’ catalysts 1 and 2 (and related complexes3) have
found many applications in organic synthesis as they
very efficiently initiate the various alkene4 and enyne5

metatheses of organic compounds and are tolerant of
many functional groups, moisture and air. We have pre-
viously reported the use of catalyst 1 for the ring-open-
ing metathesis polymerization (ROMP) of norbornene
derivatives leading to synthetic polymers bearing biolog-
ically relevant functional groups.6 We have also used
both catalysts 1 and 2 to convert readily available nor-
bornene ethers into highly functionalized polycyclic oxy-
genated heterocycles through a cascade of up to eight
consecutive alkene and enyne metatheses involving both
ring-closing metathesis (RCM) and ring-opening
metathesis (ROM) events.7 Recently, we have shown
that similar metathesis cascades can be conducted on
4,5-diallyloxy (or propargyloxy) derivatives of cyclohex-
ene, but that the unstrained, disubstituted alkene unit
within the cyclohexene ring never participates in these
metathesis cascades.8 In this Letter, we report the syn-
thesis and metathesis of the related N,N 0-bis-tosyl-4,
5-diallylamino (or propargylamino) derivatives of cyclo-
hexene and demonstrate that the cyclohexene unit of
these compounds can participate in metathesis cascade
sequences, leading to 2,2 0-bis-(tetrahydropyridine)
derivatives.9
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Amino groups are one of the few functional groups
which are known to cause difficulties for ruthenium-
based metathesis catalysts as they can coordinate to
the transition metal and deactivate it. A number of
methodologies have been developed to allow nitrogen-
containing substrates to be used with catalysts 1 and
2,10 including the addition of Lewis acids to coordinate
to the amine,11 the use of ammonium salts12 and the use
of amines bearing strongly electron-withdrawing sulfon-
amide-based protecting groups.13

We chose the latter strategy because of its generality and
widespread use, so our initial metathesis target was di-
allyl amine 5; which was prepared from the known cis-
4,5-diaminocyclohexene14 3 (itself prepared in four steps
from commercially available cyclohexene 4,5-dicarbox-
ylic anhydride) via N,N 0-bis-tosyl derivative 4 as shown
in Scheme 1. Treatment of compound 5 with first gene-
ration Grubbs’ catalyst 1 (5 mol %) in dichloromethane
at room temperature for 20 h resulted in quantitative
formation of 6,8-fused bicycle 615 through a single
RCM event,16 a result which is exactly analogous to that
previously reported for the analogous oxygen-contain-
ing derivative: cis-4,5-bis-allyloxycyclohexene.8 How-
ever, treatment of compound 5 with second generation
Grubbs’ catalyst 2 (5 mol %) under identical reaction
conditions resulted in the formation of a mixture of
6,8-fused bicycle 6, and 2,2 0-bis-(tetrahydropyridine) 7.
Formation of the latter compound requires that the
disubstituted alkene within the unstrained cyclohexene
group participates in a RCM–ROM–RCM cascade.
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Scheme 1. Reagents and conditions: (i) TsCl (2.2 equiv)/Et3N
(4.0 equiv), CH2Cl2, N2; (ii) NaH (3.0 equiv)/allyl-Br (5.0 equiv),
DMF, N2; (iii) compound 1 (5 mol%), CH2Cl2, N2, rt; (iv) compound
2 (5 mol%), CH2Cl2, N2, rt.
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Compound 7 was the minor product (29%) under these
conditions and we were not able to find conditions
which favoured the formation of this product.15 In par-
ticular, conducting the reactions with catalysts 1 or 2
under an ethene atmosphere17 (to form methylidene
ruthenium complexes18 in situ) only reduced the yield
of both products; catalyst 1 forming compound 6 in
an 83% yield under these conditions, whilst catalyst 2
gave compound 6 in just a 21% yield and compound 7
in a 9% yield.

To allow enyne metatheses of cyclohexene diamine
derivatives to be investigated, N-allyl-N 0-propargyl
derivative 8 was prepared from compound 4 in two steps
as shown in Scheme 2. When compound 8 was treated
with first generation Grubbs’ catalyst 1 (10 mol %) at
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Scheme 2. Reagents and conditions: (i) NaH (1.2 equiv)/allyl-Br
(1.0 equiv), DMF, N2; (ii) NaH (3.0 equiv)/propargyl-Br (3.0 equiv),
DMF, N2; (iii) compound 1 (10 mol%), CH2Cl2, N2, 35 �C; (iv)
compound 1 (10 mol%), CH2Cl2, H2C@CH2, 35 �C.
35 �C in dichloromethane under an inert atmosphere,
the product of a ring-closing enyne metathesis process,
6,8-fused diene 9 was isolated as the only product in a
modest 56% yield.15 However, when this reaction was
carried out under an ethene atmosphere, the only iso-
lated product was compound 10 resulting from enyne
cross-metathesis between the terminal alkyne and
ethene.

Since the cyclohexene unit of substrate 5 had shown a
propensity to be involved in enyne metathesis cascades
even when an alternative metathesis route was available,
the metathesis of bis-propargylamine 11 was also inves-
tigated. Compound 11 was prepared by propargylation
of compound 4 (Scheme 3) and treated with either cata-
lyst 1 or 2. When these reactions were conducted under
an inert atmosphere, no reaction occurred. However, by
conducting the reactions under an ethene atmosphere,
the enyne metathesis cascade was facilitated and a mix-
ture of bis-(tetrahydropyridine) 12 and mono-alkyne 13
was isolated.15 The highest yield of compound 13 was
obtained using catalyst 1 (10 mol %) in dichloromethane
at room temperature. Under these conditions, com-
pound 13 was obtained in a 63% yield, along with
16% of compound 12 and 20% of recovered starting
material 11. The highest yield of compound 12 (22%)
was obtained using catalyst 2 (10 mol %) in toluene at
60 �C, and under these conditions compound 13 (59%)
and starting material 11 (18%) were also isolated. Com-
pound 13 is formed by an enyne cross-metathesis
between one of the alkyne units of substrate 11 and
ethene. Interestingly, no evidence for the formation of
the corresponding bis-diene resulting from enyne
metathesis at both alkynes was ever obtained from these
reactions. The formation of compound 12 demonstrates
that a cyclohexene unit can be involved in metathesis
cascades using both first and second generation Grubbs
catalysts.

The results obtained with compound 11 are in marked
contrast to the metathesis of the analogous oxygen-con-
taining derivative: cis-4,5-bis-propargyloxy-cyclohexene
which was inert to catalyst 1, but which reacted in the
presence of catalyst 2 and ethene to give a mixture of
three products.8 Two of these products were the dienes
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Scheme 3. Reagents and conditions: (i) NaH (3.0 equiv)/propargyl-Br
(5.0 equiv), DMF, N2; (ii) compound 1 (10 mol%), CH2Cl2,
H2C@CH2, rt (12, 16%; 13, 63%) or 2 (10 mol%), toluene, H2C@CH2,
60 �C (12, 22%; 13, 59%).
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formed by cross-metathesis (CM) between ethene and
one or both of the alkynes. The third product was a
6,8-fused triene formed by a CM–RCM(enyne)–CM
metathesis process. The cyclohexene unit was not
involved in any of these processes.

Finally, we extended this chemistry to enyne metathesis
of 2,3-diaminonorborn-5-ene derivatives. Initially, we
planned to investigate the endo-cis-isomer by analogy
with our previous work on norbornene ethers.7

However, whilst we were able to prepare N,N 0-ditosyl-
endo-cis-2,3-diaminonorborn-5-ene from the known
endo-cis-2,3-diaminonorborn-5-ene19 without difficulty,
all attempts to bis-propargylate the N,N 0-ditosyl-deriva-
tive gave an inseparable mixture of mono and di-propar-
gylated material. The difficulty in accomplishing this
alkylation is presumably due to both nitrogen atoms
being in the sterically more hindered endo-position of
the norbornene unit and bearing large tosyl groups.
To overcome this problem, the synthesis of the corre-
sponding trans-2,3-diaminonorborn-5-ene derivative
was undertaken. The parent trans-2,3-diaminonorborn-
5-ene 16 had not previously been reported, but we were
able to access it from commercially available trans-nor-
born-5-ene-2,3-dicarbonyl chloride by a double Curtius
rearrangement as shown in Scheme 4. Thus, treatment
of trans-norborn-5-ene-2,3-dicarbonyl chloride with
sodium azide gave bis-acylazide 14, which underwent a
double Curtius rearrangement in refluxing toluene to
give norborn-5-ene-trans-2,3-diisocyanate 15. Acidic
hydrolysis of bis-isocyanate 15 gave diamine 16 as its
dihydrochloride salt. Bis-tosylation of diamine 16 gave
N,N 0-ditosyl-derivative 17, which, unlike the endo-cis-
diastereomer, was readily bis-propargylated under stan-
dard conditions to give enyne metathesis precursor 18.

Treatment of compound 18 with first generation
Grubbs’ catalyst 1 in the presence of ethene resulted in
the formation of tricyclic bis-diene 19 in a 43% yield
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Scheme 4. Reagents and conditions: (i) NaN3, THF/H2O, �10–25 �C;
(ii) toluene, reflux; (iii) 6 N HCl, reflux; (iv) TsCl (2.0 equiv)/Et3N
(4.0 equiv), CH2Cl2, N2; (v) NaH (3.0 equiv)/propargyl-Br (5.0 equiv),
DMF, N2; (vi) compound 1 (5 mol%), CH2Cl2, H2C@CH2, rt.
as the only isolated compound.15 Compound 19 could
in principle be formed by two different routes. An initial
CM between ethene and one of the terminal alkynes
(probably the exo-propargylamino group) could initiate
an RCM–ROM–RCM(enyne)–CM cascade leading to
compound 19 in a single sequence. Alternatively, if the
initial reaction occurs between ethene and the strained
norbornene unit, this would establish a cyclopentane
bearing two vinyl groups and two propargylamino
groups, each of which could separately undergo an
RCM(enyne) followed by quenching of the conjugated
ruthenium alkylidene with ethene to give compound
19. It was not possible to increase the yield of compound
19 above 43% using catalyst 1, and the use of catalyst 2
(even at 60 �C in toluene under an ethene atmosphere)
failed to give any isolable product.20

In conclusion, we have demonstrated that in marked
contrast to the corresponding allyl and propargyl ethers,
4,5-diaminocyclohexene derivatives do undergo meta-
thesis reactions involving ring-opening of the cyclohexene
unit leading to mono- and bis-tetrahydropyridines. In
addition, a suitably substituted norbornene derivative
was found to undergo a cascade of enyne metatheses,
leading to a tricyclic bis-diene.
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